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SIMULATION WITH MARKOV

TRANSITION MATRIX MODEL OF
A REQUISITION PROCESSING SYSTEM

IRWIN F. GOODMAN

ABSTRACT

A cirsory review of the literature relating to the

application of the Markov Transition Probability Matrix for

the evaluation and analysis of problems was accomplished.

A FORTRAN IV computer time sharing program, based upon the

mathematics of Markov transition Matrices, has been

developed and documented. The program was initially

developed with data based upon a classical random walk

problem involving a drunk meandering from corner to corner

between his home and a bar. The resulting Markov Model

has been applied to a requisitioning system, an essentially

equivalent problem. Some analysis results are presented

following the application of the computer program to a

requisitioning system. The computer program has been

written generally enough for application to such other

diverse problem areas as charge accounts, tank battles

and reliability and maintainability.
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A. Introd :ýction

A cursory review of the literature related to Markov

transition probability matrix modeling was accomplished.

A short bibliography of related books is included in a

later section. Some of the morc essential Markov tech-

nicques of analysis were organized together and then

programed in FORTRAN for solution on a computer time

sharing terminal. The pur;Iost of the model is to describe

a requisition processing system. An equivalent proble2m

involves the classical random walk problem involving a

drunk meandering from corner to corner between his home and

a bar. Therefore, initially, the computer program and

model were developed and checked out based upon the

random walk problem. Then, the model was applied to a

requisitioning system.

The data used in this report are presented only forl

the sake of illustrating the theory employed. The

findings are consistent with the data presented but

therefore not necessarily with the real-world situation.

S?
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B. Markov Chains

A Markov Chain is defined as a probabilistic process

in which the probability of moving from cnestate to another

state may depend on the present state, but on no other past

history. Classically, this process is usually examplified

in terms of the "wandering drunk" problem which is an

example of a random walk.

"Wandering Drunk" Problem

A long street has eight intersections. A drunk wanders

along the street. As home is located at intersection 1

and his favorite bar at intersection number 8.

1 2 3 4 5 6 7 8

HOME BAR

Intersections 2 - 7 Are Referred To As Street Corners

At each intersection other than his home or the bar, he

moves in the direction of the bar with probability 1/4 and

in the direction of his home with probability 3/4. He

never wanders down a side street. If he arrives at his home

or the bar, he remains there. When he remains, we say that

the process .a "absorbed".
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Some of the typical questions that an analysis of this

"problem would address itself to are as follows:

a. What is the chance that, starting at a given

corner, the drunk will end up at his home or at the bar?

b. If the drunk starts at a particular corner, how

many blocks, on the average, will the drunk walk before being

"absorbed", that is, arrive at his home or the bar?

Stated in the Markov language of probability:

What are the absorption probabilities, and what is the

AG

mean tiime to absorption?

The transition probability matrix and diagram for this

problem are as follows:

* TRANSITION PROBABILITY MATRIX

CORNR CORNR CORNR CORNR CORNR CORNR
STATE HOME BAR 2 3 4 5 6 /

•1 Home 1 0 0 0 0 0 0 0
Bar 0 1 0 0 0 0 0 0
CORNR 2 .75 0 0 .25 0 0 0 0
CORNR 3 0 0 .75 0 .25 0 0 0
CORNR 4 0 0 0 .75 0 .25 0 0
CORNR 5 0 0 0 0 .75 0 .25 0
CORNR 6 0 0 0 0 0 .75 0 .25
CORNR 7 0 .25 0 0 0 0 .75 0

4 3



TRANsITION PROBABILITY DIAGRAM

HOME

.75 CORNR 2.2.75 ( .25

CORNR 3

.75 CORNR 4

.75 25

.75 cCORNR 5.25CORNR 6N2

CORNR7

75 .25
BAR

In summary, the home and bar states are referred to as

absorbing states and the other states, CORNR 2 thru CORNR

7, are referred to as transient states. In the case of

absorption states, once there, the probability oF remaining

there is one (certainty). On the other hand with regard to

the transition states, it is possible to leave as well as

enter them.
4



The transition probability matrix for the "wandering

drunk;4 probiem was processed by the MARKI computer program.

The computer print - out is included in a later section.

The results are briefly discussed as follows: Assuming the

drunk initially can be at any one of the corners 2 thru 7

(away from the home or bar) with equal probability 1/6, then

in the long run he will end up at his home with probability

.92 and end up at the bar with probability .08. With

regard to the typical questions discussed earlier, the

results are as follows:

The probability that starting at a given corner, the

drunk will end up at his home or the bar are as follows:

STATE HC ME BAR

SCORNR 2 .999 .001
CORNR 3 .996 .004
CORNR 4 .988 .012
CORNR 5 .963 .037
CORNR 6 .889 .111
CORNR 7 .667 .333

If the drunk starts at a given corner, the quantity of

blocks, on the average, that he will walk before arriving

at his home or the bar are as follows:

5



AUV.Ar-&' nTTM.7rTq'V

INITIAL OF BLOCKS TO
STATE HOME OR BAR

CORNR 2 2.0
CORNR 3 3.9
CORNR 4 5.8
CORNR 5 7.5
CORNR 6 8.5
CORNR 7 7.3

6



C. "A Requisition Processing System" Problem

Markov Transition Probability Matrix reasoning and

techniques of analysis which were briefly discussed above

in terms of a classical random walk problem have been

applied to a requisition processing system. The system

has been greatly simplified here for the sake of presenta-

tion of ideas and the mathematical modeling. The system

is primarily automatic, consisting of a high speed

automatic data processing computer system and the logic

of a highly sophisticated inventory control system which

together process the transactions. A requisition represents

a demand on the system by a customer for mat 2riel. This

type of transaction (requisition) and the many other

transactions necessary to keep the records current and

* •decisions reliable are processed by the computer inventory

control system.

A succebaful attempt has been made to mathematically

model some of the aspects of such a system. To begin with,

only the requisition type transactions were studied. Such

a transaction was considered to be in the following states:

b 7
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MRO - Mat-pripl I.Paqe Orer,

PASORD - Passing Order

REJCUS - Reject to Customer

BACKOR - Back-Order

Actions to be completed:

FRSPAS - First-Pass

SUBPAS - Subsequent - Pass

COMPLT - Completed action is defined as any one

of the above four states (MRO, PASORD,

REJCUS, BACKOR)

Two versions were modeled, one for all the above states,

four absorbing and two transient, and the other one con-

taining only one absorbing state (in place of the four

absorbing states) and two transient states (same two

transient states). The models are referred to as Model A

and Model B. The states considered for each model are

shown below:

8



•4OL A MODEL B

Absorption States: Absorption States:

MRO COMPLT

PASORD

REJCUS

BACKOR

Transient States: Trainsient States:

FRSPAS FRSPAS

SUBPAS SUBPAS

The Model B version was defined with less states to

facilitate a more in-depth variation of parameter study.

The results of the variation of parameter study are

presented in a later section. The transition probability

matrices and diagrams for the Model A and Model B versions

of the requisition processing system are as follows:

9



MODEL A

TRANSITION PROBABILITY DIAGRAM

1 1

PASORD REJCtJS

.02
.0 .22 .03 1

1

BCKOR

TRANSITION PROBABILITY MATRIX

STATE: MRO PASORD REJCUS BACKOR E RSPAS SUBPAS

MRO 1 0 0 0 0 0
PASORD 0 1 0 0 0 0
REJCUS 0 0 1 0 0 0
BACKOR 0 0 0 1 0 0

P'lSPAS .55 .02 .03 .22 0 .18
SJBPAS .06 .09 .22 .40 0 .23

10



MODEL B

TRANSITION PROBABILITY DIAGRAM

TRANSITION PROBABILITY .MATRIX

COMPLT FRSPAS SUBPAS

COMPLT 1 0 0
FRSPAS .82 0 .18
SUCPAS .77 0 .23

11
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The earlier questions regarding the "drunk" in the

classical random walk -roblem can now be restated in the

context of the requisition processing system as follows:

a. Given the transaction is in one of the transient

states (first pass or subsequent pass), what is the

probability the transaction will end up as a "MRO"?; as

a passing order?: as a reject to customer?; as a backorder?

b. Given the transaction is in one of the transient

states (first pass or subsequent pass) how many times, on

the average, will the transaction be in the subsequent pass

state prior to ending up as a MRO?; as a passing order?: as

a reject to customer?; as a backorder?

12



D u.•ue Resuits with Model A

1. The Model A of the requisition processing system

was processed by the MARKi computer program. The computer

print-out is includec in a later section. Some of the

results are as follows:

2. The expected number of times of remaining in a

transient state prior to being absorbed are obtained

from the fundamental matrix. The results are as follows:

a. A first pass (FRSPAS) transaction can be expected

to be in a first pass state only once prior to being

absorbed. This, agrees as it should with the "common

sense" of the system.

b. A subsequent pass (SUBPAS) transaction can be

expected to be in a first pass state zero times prior to

being absorbed. This also agrees as it should with the

"colmon sense" of the system by implying that once a

transaction is a subsequent pass transaction it cannot pass

through the first pass state.

c. A first pass (FRSPAS) transaction can be expected

to be in a subsequent pass state about .23 times before

being absorbed.

13



d. A subsequent pass transaction can be expected to

be in a subsequent pass state 1.30 times prior to being

absorbed.

3. The mean number of cycles until absorbtion is

obtained from the T Matrix.

a. The mean number of cycles until completion for

a first pass transaction is 1.23.

b. The mean number of cycles until completion for

a subsequent pass transaction is 1.30.

4. The probability that a transaction is completed

given it was initially in a particular state is obtained

from the U Matrix.

a. The probability is .56 that a first pass trans-

action will become an MRO and .08 that a subsequent pass

transaction will become an MRO.

b. The probability is .04 that a first pass trans-

action will become a passing order and .12 that a subse-

quent pass transaction will become a passing order.

c. The probability is .08 that a first pass trans-

action will become a reject to customer and .29 that a

subsequent pass transaction will become a reject to

customer.

14



d. The probability is .31 that a first pass trans-

action will go on back-order and .52 that a subsequent

pass transaction will go on back-order.

5. The number of cycles required to reduce the

fraction of subsequent pass transactions to 1% or less is

obtained from computation of the AM(K) vector.

a. Assuming initially that 20% of the transactions

to be processed are subsequent pass, it can be expected to

take three (3) cycles for the fraction of subsequent pass

transactions to drop to 1% or less. In two (2) cycles the

fraction of subsequent pass transactions can be expected

to drop to about 4%.

b. The same percentages as above essentially hold

+ ÷even if initially 100D% of the transactions to be processed

are subsequent pass transactions.

LF
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E. A Variation of Parameter Study on Model B.

i. initialLy, MOdel B was run with transition Matrix

values as depicted in the earlier section showing the

transition matrix diagram. The computer print-out is

included in a later section.

2. A variation of parameter study was conducted on

Mc%7 B. The purpose of the study is to develop charts

and graphs depicting relationships between the input and

output of Model B over a complete range in values of

particular parameters. The parameters involved, their

possible range in variation, and the parametric values

studied are shown in the following table:

Possible Parametric
Parameter Range Values Studied

First Pass to 0.Q to 1.0 .01, .05, .10, .15,

Subsequent Pass .20, .25, .50, .75,

Transition Probability .99, .999

Subsequent Pass to 0.0 to 1.0 .05, .10, .25, .50

Subsequent Pass

Transition Probability

16



INPUT: Model B was studied for three initial vector condi-

tions.

(1) (0, 1, 0): 100% first pass transactions and

0% subsequent pass transactions.

(2) (0, .80, .20): 80% first pass transaction and

20% subsequent pass transactions.

(3) (0, 0, 1): 0% first pass transactions, and

100% subsequent pass transactions.

OUTPUT: Model B was studied for the following Outputs:

(1) The model was studied for the number of cycles

required to yield an output vector such that the percent

of subsequent pass transactions (incompleted transactions)

is 1% or less. This is equivalent to the number of cycles

required to yield an output vector such that the percent

of completed transactions is 99% or more.

(2) Also, the average quantity of cycles expected for

a first pass transaction and a subsequent pass tcdnsaction

to be completed were studied.

3. The results are presented on the following charts.

Chart E-1 summarizes the results obtained for 100% first-

pass input and also for the mixed input (80% first-pass and

20% subsequent pass). The solid curves represent the 100%
I

,I
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first-pass input and the broken curves represent the mixed

Input.

The other input condition, 100% subsequent pass, is

shown on Chart E-2.

The average quantity of cycles expectmd fcr a first-

pass transaction to be completed is presented on Chart

Z-3. Chart E-4 shows the average quantity of cycles

expected for a subsequent-pass transaction to be completed.

The basic data for preparing Charts E-1 and E-2 is

presented in a tabular format on Charts E-5 thru E-8.

Discussion and interpretation of the charts and other

findings is being withheld at this time pending further

study of the model.

18



CHART E-1

QUANTITY OF CYCLES REQUiRED SUCH TH{AT THE PERCENIT OF OUTPUT
DWC"" (11LVUMPLETE) IS 1% OR LESS

TNT'TTAT. r, KMTfP0W~-_

100% FIRST PASS INPUT (0, 1, 0) AND MIXED INPUT (0, 80, .20)

SUEPAS TO
7 - SUBPAS VAL.UEr

5

0 0

.105

INITIAL CONDITIONS:

04 (0, 1,0): 100%
First-Pass

(0, .80, .20): 80%
First-Pass, 20%
Subsequent-Pass

0.0 0.51.
FIRST-PASS TO SUBSEOQUENT-PASS TRANSITION PROBABILITY VALUE

19



CHART E-2

QUýNTITY OF CYCLES REQUIRED SUCH THAT THE PERCENT OF OUTPUT
TRANSACTIONS FOR SUBSEQUENT-PASS (INCOMPLETE) IS 1% OR LESS

INITIAL CONDITIONS:

100% SUBSEQUENT-PASS INPUT (0, 0, 1)

7 --

6
S /,

0014 W
0a 4 [

- - - .... .-
Zs-

W W
0

o•o
2t -

0.0 0.5 1.0

SUBSEQUENT-PASS TO SUBSEQUENT-PASS TRANSITION PROBABILITY VALUE
20



CHART E-3

AVERAGE QUANTITY OF CYCLES EXPECTED FOR A

FIRST-PASS TRANSACTION TO BE COMPLETED

SUBPAS
TO

SUBPAS
VALUES:

3 - .50

"0 x

U .25

0 ./05

OE--

1.

FIRST-PASS TO SUBSEQUENT-PASS TRANSITION PROBABILITY VALUE
21
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CHART E-4

AVERAGE QUANTITY OF CYCLES EXPECTED FOR A
SUBSEOUEN'1'-PASS TRANSAMTTON? TO R. roMPrT'?'w.n

C.)

u

0

14 m-

0.0 0.5 1.0

SUBSEQUENT-PASS TO SUBSEQUEnNT-PASS TRANSITION PROBABILITY VALUE

22
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CHART E-5

TABULATION OF BASTe DATA
SUB-PASS TO SUB-PASS TRANSITION PROBABILITY VALUE= .05

FIRST PASS TO SUBSEQUENT PASS
QTY TRANSITION PROBABILITY VALUES

CYCLES
(STEPS) .999 99.75 o .25 5 10

INITIAL CONDITION *. (0, 1, 0)

1 .999 .990 .750 .500 .250 .200 .150 .100 .050 .010
2 .050 .049 .037 .025 .012 .010 .007 '.005' .002 .000
3 .002 .002 .002 .001 .001
4
5
6
7
8

INITIAL CONDITION *: (0, .80. .20)

1 .810 .810 .610 .410 .210 .170 .130 .090 .050 .002 4
2 .040 .040 .030 .020 .010 .008 .007 004- .002 .000
3 .002 .002 .002 .001 .001

14

8

INITIAL CONDITION "1 (0, 0, 1)

1 .050 .050 .050 .050 .050 .050 .050 .050 °050 .050

2 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002

3
4
5
6
7

8

*INITIAL CONDITION (% Computed., F FIRST PASS, % SU3SEQUEVT PASS)

23
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CHA•r E-6

TABULATION OF BASIC DATA
SUB-PASS TO SUB-PASS TRANSITION PROBABILITY VALUE=. 10

FIRST PASS TO SUBSEQUENT PASS
OTY TRANSITION PROBABILITY VALUES

CYCLES 
.

(STEPS) .999 199 .75 .50 .25 .20 .15 .10 .05 .01

INITIAL CONDITION *: (0, 1, 0)

1 .999 .990 .750 .500 .250 .200 .150 .100 .050 .010
2 .100 .100 .075 .050 .025 .020 .015 .010 .005 .001
3 .010 .010 .007 .005 .002 .002
4
5
6
7
8

-.. . - - - -.. - -'

INITIAL CONDITION *. (0, .80, .20)

1 .820 .820 .620 .420 .220 .180 .140 .100 .060 .030
2 .082 .082 .062 .042 .022 .018 .014 .010 .006 .003
3 .008 .008 .006 .004 .002
4
5
6
7
8

INITIAL CONDITION 14 (0, 0, 1)

1 .100 .100 .100 .100 .100 .100 100 .100 .1.00 .1.00
2 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010
3
4
5
6
7
8

*INITIAL CONDITIO (N Computedo, % FIRST PASS, % SUBSEOUENT PASS)

24



CHART E-7

TABULATION OF BASIC DATA
SUB-PASS TO SUB-PASS TRANSITION PR0AAATT.T'rPVA,,, *

FIRST PASS TO SUBSEQUENT PASS
QTY TRANSITION PROBABILITY VALUES

CYCLES
(STEPS) .999.20 .15 . .05 .01

INITIAL CONDITION *: (0, 1, 0)

1 .999 .990 .750 ,500 .250 .200 .150 .100 .050 010

2 .250 .250 .187 .125 .062 .050 .037 .025 012 002
3 .062 .062 .047 .031 .016 .012 .009 .006 .003 .001
4 .016 .015 .012 .008 .004
5 .004 .003
6
7
8_

INITIAL CONDITION *z (0, ,80, .20)

1 .850 5 .650 .450 .250 .210 .170 .130 .090 .060

2 .212 .210 .162 .112 .062 .050 .042 .032 .022 .014
3 .053 .053 .041 .028 .016 .013 .010 .008 .006 .004
4 .014 .012 .010 .007 .004
5 .003
6
7
8

INITIAL CONDITION *: (0, 0. 1)
-____________ - - -

1 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250
2 .062 .062 .062 .062 .062 .062 .062 062 062 .062
3 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016
4 .004 .004 .004 .004 .004 .004 .004 .004 .004 .004
5
6
7
8

*.INITIAL CONDITION (% Computod.. % FIRST PASS, % SUBSEQUENT PASS)

25



CHART E-8

TAIIU[,AT[ON OP' IBA;IC DATA
SUB-PASS TO SUB-PASS TRANSITION PRO1ABILITY VALUE= .50

OTY TRANSITION PROBABILITY VALUES
CYCLES(STEPS) [

(9TPS.. .7! 5 25 0 [ 15 10 .05 .01

INITIAL CONDITION *: (0, 1, 0)

1 .999 .990 .750 .500 .250 .200 .150 .100 .050 .010
2 .499 .499 .375 .250 .125 .100 .075 .050 .025 .005
3 .250 .250 .187 .125 .062 .050 .038 .025 .012 .002
4 .125 .125 .094 .062 .031 .025 ,019 .012 .006 .001
5 .062 .062 .047 .031 .016 .012 .009 .006 .003 .001
6 .031 .031 .023 .016 .008 .006 .005 .003 .002
7 .016 .015 .012 .008 .004 .003 .002 .001 .001
8 .008 .008

INITIAL CONDITION *s (0, 480, .20)

1 .892 .892 .700 .500 .300 .260 .220 .180 .140 .110
2 .450 .450 .350 .250 .150 .130 .110 .090 .070 .054
3 .225 .225 .175 .125 .075 .065 .055 .045 .035 .027
4 .112 .112 .087 .062 .037 .032 .028 .022 .017 .013
5 .056 .056 .044 .031 .019 .016 .013 .011 .009 .007
6 .028 .026 .022 .016 .010 .008 .007 .006 005 001
7 .014 .014 .011 .008 .005 .004 .003 .003 .001
8 .007 .007

INITIAL CONDITION *: (0, 0, 1)
4MI

1 .500 .500 .500 .50( .500 .500 .500 .500 .500 .500
2 .250 .250 .250 . 5 .250 .250 .250 .250 .250 .250
"3 .125 .125 .125 .12! .125 .125 .125 .125 .125 .125
4 .062 .062 .062 .06A .062 .062 .062 .062 .062 .062
5 .031 .031 .031 .031 .031 .031 .031 .031 .031 .031
6 .016 .016 .016 .01E .016 .016 .016 .016 .016 .016

7 .008 .008 .008 .00 .008 .008 ,008 .008 .008 .009
8

*INITIAL CONDITION (% Computed., % FIRST PASS, % SUBSEQUENT PASS)

, .,26
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F. Mathematical Terminology and Formulae

1. Transition Probability Matrix: A square array of

numbezsall of whose entries for each row add up to one.

1.1 Example:

NEXT STATE

STATE HOME 2 3 4 5 6 7 BAR
HOME 1 0 0 0 0 0 0 0

zo 2 3/4 0 1/4 0 0 0 0 0
PRESENT 3 0 3/4 0 1/4 0 0 0 0

STATE 4 0 0 3/4 0 1/4 0 0 0
5 0 0 0 3/4 0 1/4 0 0
6 0 0 0 0 3/4 0 1/4 0
7 0 0 0 0 0 3/4 0 1/4

BAR 0 0 0 0 0 0 0 1

4 1.2 Explanation: The entries for each particular row

Srepresent the probabi.,ities of an item going to the corres-

ponding column state given it was initially in the state

* ,. corresponding to the particular row, i.e., The probability of

going from state 4 to state 2 is 0. to state 3 is .750, and to

state 5 is .250.

2. Absorbing States: Row probability vectors in the

transition probability matrix having "is" on the diagonal of

the matrix and all the other entries are "Gs" are referred

1 2to as absorbing states, i.e., row "home" and row "bar" are

absorbing states.

27,Li



3. Transient States (non-absorbinali WNW nroh~biA•,

vectors in the transition probability matrix not having "Is"

on the diagonal of the matrix are referred to as transient

states. i.e., rows "2"1, 1131, "4", and "5" are transient

states.

4. Canonical Form of Transition Probability Matrix:

When in the transition probability matrix, all the absorbing

states (rows) are grouped together at the top of the matrix

with all the "1s" composing an identity matrix and all of

the transient states (rows) are together at the bottom of

the matrix, then, the transition probability matrix is

said to be in canonical form.

4.1. Example:

STATE HOME BAR ICORNR2 CORNR3 CORNR4 CORNR5 CORNRG CORNR7
HOME 1.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
BAR 0.000 1.0001 0.000 0.000 0.000 0.000 0.000 0.000
CJRNT2 - .75o- 00o5 F-0- 6- - .5o 0.6-00 T.o0o 0 .oo .,o 0o
CORNR3 0.000 0.0001 .750 0.000 .250 0.000 0.000 0.000
CORNR4 0.000 0.000 0.000 .750 0,000 .250 0.000 0.000
CORNR5 0.000 0 000 0.000 1.000 o750 0,000 .250 0.000
CORNR6 0.000 0*000 0.000 V;.000 0.000 .750 0,000 .250
CORNR7 0.000 .250 0.000 0.000 0.000 0"000 .750 0.000

5. Partioning Canonical Matrix: The canonical matrix

is subdivided as follows:

---------------------------------

8R C
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5.1 CI: identity Matrix: The number of rows equals

the number of columns equals the number of absorbing; state.s.

5.11 Example:

STATE HOME BAR
CIHOME 1.0000 0.000

PAR 0.000 1.000

5.2 CO: Zero Matrix: A matrix containing all zeros

and having the number of rows equal to the number of

absorbing states and the number of columns equal to the

number of transient states.

5.21 Example:

0 0 0 0 0
c_ 0 0 0 0 0 0

5.3 CR: Matrix of Transient to Absorbing Probabilities:

The entries represent the probability of going from tran-

sient state to absorbing state. The number of rows equals

the number of transient states and the number of columns

equals the number of absorbing states.

5.31 Example:

-STATE HOME BAR
CORNR2 .750 0.000
CORNR. 0.000 0.000

CR= CORNR4 0.000 0.000
CORNR5 0.000 0.000
CORNR6 0.000 0.000
CORNR7 0,000 .250
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5* ý CQ.- Mat r. Tiatf'ýI LU w i racient P'roua~n 1.ttts:

The entries represent the irhalhi1,it-? ^F fron ;--, t ... t

state to transient state. The number of rows equals the

number of columns equals the number of transient states.

5.41 Example:

STATE CORNR2 CORNR3 CORNR4 CORNR5 CORNRG CORNR7
CORNR2 0.000 .250 0.000 0.000 0.000 0.000
C9RNR3 .750 0.000 .250 0.000 0,000 0.000
CORNR4 0.000 .750 0.000 .250 0.000 0.000

CO CORNR5 0.000 0.000 .750 0.000 .250 0.000
CORNR6R 0,000 0.000 0.000 .750 0.000 1250
CRNR7 0.000 0.000 0.000 0.000 .750 0,000

6. FN: Fundamental Matrix: Each entry, FN (I.J), is

the expected number of times in state J (column) before

being absorbed, given that the present state is I (row).

The number of rows equals the number of columns equals the

number of transient states.

FN = (NI-CO)

NOTE: NI is an identity ma rix, established for the compu-
tation of FN. NI has the number of rows equal to the
number of columns equal to the number of transient states.

6.1 Computation of FN: FN is computed, using the

following power series approximation:

FN- NI + CO + (CQ) + (Co) +

6.2 Example•

..TATF CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
C OFNR2 1.332 .443 .146 .048 .015 .004

FN CO8NR3 1.328 1,771 .5B6 .190 .059 .015
CORNR4 1.317 1,757 1.903 .618 .190 .o048
CORNR5 1.284 1,713 1.855 1.903 .586 ,146
CORNR6 1.186 1,551 1.713 1,757 1.771 .443
CORNR7 .889 1.186 1.284 1.317 1.328 1.332
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7. T: Matrix of Absorption Times: Each entry is thp

mean time to absorption (number of states passed through,

including final state and not including initial state, in.

order to be absorbed). This matrix is a column vector with

the number of rows equal to the number of transient'states.

7.1 Computation of T: Each entry of T is equal to the

row sum of each row of FN. This is accomplished by estab-

lishing a column vector, 01 of l's having the same number

of rows equal to the number of transient states.

T = (FN) 0 (01)

7.2 Example:

STATE
CORNR2 1.9S7

CORNR3 3.949
T =CRRNR4 5.833CORNR5 7,487

CZRNR6 8,450

"ORNR7 7,337

8. U: Matrix of Absorption Probabilities: Each entry

is the probability of being absorbed, given it was initially

in a transient state. The number of rows equals the number

of transient states, and the number of columns equals the

number of absorbing states.

8.1 Computation of U:

U = (FN) * (CR)
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8.2 Example:

STATE HOME BAR
CORNR2 0999 .001
C3RNR3 .996 .004

U CORNR4 .9R ..012
CORNR5 .963 .037
CORNR6 .089 .111
CORNR7 .667 .333

9. CQMP: Matrix of Transition Probabilities for M

Steps: Each entry is the probability of going from state

to state. The number of rows equals the number of columns

equals the number f absorbing and transient (non-absorbing)

states.

9.1 Computation of CQMP:

CQMP - (C) M

9.2 Example:

For M = 3

COMP =

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
HOME 1.000 0.000 0.000 0.000 0.000 0.000 01000 0.000
BAR 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
CORNR2 .891 0.000 0.000 .094 0.000 .016 0.000 0.000
CORNR3 .562 0.000 .281 0,000 .141 0.000 .016 0.000
CORNR4 .422 0,000 0,000 .422 0,000 .141 0.000 .016
CORNR5 0,000 .016 e422 0.000 .422 0,000 ,141 0,000
CORNR6 0,000 .062 0.000 .422 0.000 .422 0.000 .094
CORNR7 0,000 .297 0.000 0.000 .422 0,000 ,281 0.000
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10. A: Initial .Rtatp qnar'o vv.ah•i.,.ty t•,• V=c o

Initial values for each of the possible states (columns).

The number of rows is one, and the number of columns equals

the number of absorbing and transient states

10.1 Example:

A - (0, 0, 1/ , 1/6, 1/6, 1/6, 1/6, 1/6)

11. AM: State Space M Steps Later: Each entry is the

value for each of the states, M steps later, given initial

values A.

11.1 Computation of AM:

AM = (A) * (CQMP)

11. 2 Example:

For M=3,

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
.313 .063 .117 157 1164 .097 .073 .018

12. Summary: For absorbing Markov chains, the following

three questions are usually of interest:

a. What is the probability that the process will end

up in a given absorbing state?

Answer: Entries in Matrix U.
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b. C the aveuae, iiuw .... Io w iL . ... Lalke for the

process to be absorbed?

Answer: Entries in Matrix T.

c. On the average. how many times will the process

be in each transient (non-absorbing) state?

Answer: Entries in Matrix FN.
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r. iow cnart (Fortran Program - I4ARX1/2/3)

Simulation with Markov
TranGition MntLix Model ot

A Requisition Processing System
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100*

100/130

220

230 UM rp

T Y

230/240 F A, AM, STATLI

*Program Line Numbers

35



r9

\/VPLJ / Input: Qty of Absorbing
260/280 7 States and Qty of

Transient States.

CDtVPU FE
300/310 K L =.IAPQrR,5 ewt FAN

L U -IAS.+EABo*r'Av5

PR/N T
320/330 KOOF
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340 A '
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400
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500cii

PPRN. Print: Transition
T) Matrix, C, in

Canonical Form.

580/590
OL)/'q PUTLI
K I U -LABS 0AZ
L 11) LEA85ok

t; 20 p/i\1VF 7 Print: Identity Matrix.

1i -1, KLU__

690/720 cot7ipur_>
K RL IrAJIýDlK2*I
?ARU rKU
LRU =r.,.Ok
KPAJ, -KR~U - Lt -1

73030RTPrint: Matrix of

C(A R, I)
R transient to

L2�absorbing
probabilities.
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LQ•U LU
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860/870
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L At •LCU-L& -1
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c,(Kc., LL I transient to
K •2 -ROL Mi transient
I)-L probabilities.

1010 980 1010
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* 990

-4 960/970

QIL
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1170 70

1200SET
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1270

Al (A-c,Lt2

1280 120
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1370
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FN(hr, L C Matrix
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MARK2

777
/L

2120
CY-Wý;UT) - Print: Matrix ofIYXC) F(A ti N&O LQ) Abso rpt ion

KO =KrvL, tl Itimes.
La % LaL, Lad11

2140 / N7
K&,A. A6

2270
CQ,-PLýF TE.

L -t FkQL ) KL k, .LCYf-A , •FKO), &S1. KUi!

2310 PRfv Print: Matrix of

Absorption
L R-- Lprobabilities.

2320 .215

2400 .VP LT; Input: M, qty of steps.
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J

II

2630

'.2,'" 1, ,/i,7d .<f

J : i, LU

2670--J
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Transient
cc]pcP (;j) Probability
[=/,KLI Matrix for M

steps.

2740 L!VP1(T. Input: O for same
T£YATEA Vector A,

1 for new
Vector A.

2780 PN T Print: Qty of elements,
K<:KU_ K, in Vector A.

2810 282
INPUT
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In)
2910

-cF T-

AAI (,F) JL
LA Lx)(3

2940 CArT

4I1)>Ary)-
""T)

2970

2 PPtlVT I Print: Vector, AM,
A M (J) for State Space
TrIyu M steps later.

2990

FInput- MX

P 0 to end
Computation,
1 to Do next
set data,

S•I- to skip S
sets of data
and do next
set of data.
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4000
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I-

iL O(,MPUTER -ORTkAN PIt)GRAM MAIRK 1/,/3

100 PH;NT 'SIMULATION WITH"
110 PRINT VRRKOV TF'iNSITION MATRIX MOPFL OF

ýý. PRINT "A PEQUISIrlIjN PROCESSING SYSTFM"
!'. iHINT 1DY IRWIN (OJDMA N
140 PRINT INPUT, C, TRANSITION MATRIX IN CANON!"A[ FORM
I SO PRINT IN LINES 1420 THRO IRO ORY ROW'i
I10 PR'NT PRECEDE C MATRIX DATA WITH NAMES OF STATES"
170 PRINT RIGHT JUSTIFY BETWE.FN COMMAS WITH 9PACFS AD),'I) F'0
Ig0 PRINT 7 CHARACTFR FORMAT.
1I0 PRINT FXAMPI.F. HOME, BAR, t.RNHk:!,FTC. F tLI.•Wlh 1Y ;ATi
220 CONTROL = I
2?0 DIMENSION C(g,8),CQ ,CQM CQMPCQMPI,NIFN.UXT(l).frw
240 DIMENSION STATE(g)
250 PRINT INPUT QTY 3F ABSORBlNL. STATES-IABSOR
260 INPUT, IABSSR
270 PRINT INPUT QTY OF TRANSIENT ST.TES:ITRANS
280 INPUT, ITRANS
"%9rJC COMPUTE QTY OF ROWS AND COLUMNS IN MATRIX C,
500 KU-:IABSOR + ITRANS
310 LU:IABSOR + ITRANS
320 PRINT QTY OF ROWS IN MATRIX C : ,KU
330 PRINT "TY OF COLUMNS IN MATRIX C - ,L'I
340 1 DO 65 1=1, S
350 T(I):Ot 65 AM(i):0
360 DO 66 1:1,8
370 DO 66 J:I,g
380 CQM(I,J)-Oi U(1 J):Ol 66 CQMP(I,J):0
390 G0 TO (3,4), CONTROL
400 3 READ, (STATE(J),J"I,LU)
410 4
4?0 READ, <(C(I,J),J-I,LU),I-:i,,Y.f0

430 PRINT
440 PRINT
450 PRINT TRANSITION MATRIX, C, IN CANONICAL FPRM"
460 PRINT
47'1 PRINT BB, 'STATE ",(S.TATE(J),J-I,LU)
4ý0 BB:FOPRMAT(IOA7)
490 DO B, I-I,KU
500 B: PRINT AA, STATE(I),(C(IJ),J:I,LU)
510 AA; FORMAT(A7,1OF7.3)
520 PRINT
530 PRINT
540 PRINT .PARTITION TRANSITION MATRIX (CANONICAL FORM)*
5'A PRINT .INTO FOLLOWING MATRICIES:"
560 PRINT "Ci: IDENTITY MATRIX"
570 PRINT
5F0 KI~U-:lABSOR
50 LI U:IABSOR

,,ofn PRINT Bb, STATF, ,(STATE(LI),I ':i,LIU)
D DO D, Y5
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H. COMPUTER FORTRAN PROGRAM MARK 1/2/3 (CONTD)

rMARK! CONTINUED

620 Di PRINT AA,STATE(KI),(C(KI,LI),LI:!,LIU)
630 PRINT
640 PRINT
650 PRINT "CR: MATRIX OF TRANSIENT TO ABSORBING PROBABILITIES-'
660 PRINT PROBABILITY OF GOING FROM TRANSIENT STATE'
670 PRINT *TO ABSORBING STATE'
680 PRINT
69A ! RL=IABSOR + I
700 KRU=KU
710 LRU:IABSOR
720 KRN:XRU-KRL + 1
730 PRINT BB, STATE , (STATE(LR),LR=I,LRU)
740 DO E, XR:XRLKRU
750 E: PRINT AA, STATECKR), (C(KR,LR),LR:I,LRU)
760 PRINT
770 PRINT
780 PRINT "CQ: MATRIX OF TRANSIENT TO TRANSIENT PROBABILITIES-"
790 PRINT "PROBABILITY OF GOING FROM TRANSIENT STATE"
800 PRINT "TO TRANSIENT STATE'
BW0 PRINT
820 KXQL:IAbSOR + 1
830 KQU=KU
840 LQL=IAESOR + I
850 LQU=LU
860 KQN:XQU - KQL + I
870 LQN-LQU - OQL + I
80 PRINT BD, STATE , (STATE(LQ), LQ:LQL,LQU)

890 DO F KQ=:QL,KQU
900 F: PhINT AA, STATE(KQ),(C(KQ,LQ),LQ=LQL,LQU)
910 PRINT
920 PRINT
930 PRINT 'COMPUTATION OF THE FUNDAMENTAL MATRIX"
940C ESTABLISH IDENTITY MATRIX, NI, FOR COMPUTATION OF
950C FUNDAMENTAL MATRIX, FN.
960 D0 40 XQ=KQL,KQU
970 DO 30 LQ:LQL,LQU
980 IF (XQ-LQ) 20,10,20
990 101 NI(KQ,LQ):1
1000 00 TO 30
I101 20: NI(KQ,LQ)=O

1020 301 CONTINUE
1030 401 CONTINUE
1040 PRINT "FN: FUNDAMENTAL MATRIX-"
1050 PRINT EACH ELEMENT IS THE EXPECTED NUMBER OF TIMES'
1060 PRINT 'IN STATE JCCOLUMN) BEFORE BEING ABSORBED'
1070 PRINT "GIVEN THAT THE PRESENT STATE IS I(ROW)"
1OSO PRINT
1090 PRINT BB, STATE ", (STATE(LQ),LQ:LQL,LQU)
1100 DO 50 KQ=V:VL.KQU
1110 DO 50 LQ"LQL,LQU
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H. COMPUTrER FORTRAN PROGRAM4 MARK 1/2/3 (CONTO,

1120 FNCKQ,LG)=NI(KQ,LQ) +- CC(XQ,LQ)
1130 CQ(XQ,LQ)zC(KQ,LQ)
1140 50 CONTINUE
1150C COMPUTE THE FUNDAMENTAL MATRIX, FN EQUAL TO THE INVERSE
1160C OF FNI:NI-CQ, BY SERIES APPROXIMATiON
1170 70
1190 DO 90 KQ=KQL,KQU
1190 DO 90 LQ=LQL,LOU
1200 CQ M( KQ ,LQ ) 7
1210 DO SO K:KQL I(QU
1220 CQM(KQ ,LQ) :IQM(XQ ,LQ)4-CQ (lQ ,K)*C(K,LQ)
1230 80 CONTINUE
1240 90 CONTINUE
1250 DO 120 XQ=XQLKQU
1260 DO 120 LQ=LQL,LQU
1270 FN(KQ,LQ)=FN(KQ,LQ)-.-CQM(KQ,LQ)
1280 120 CONTINUE
1290 CALL AMXMN(CQM XQL,KQLJ,LQL LQU,AX,,BX)
1300 IF (ABS(AX)-.01501) 140,140,150
1310 140 IF(ABS(BX)-.0001) 160.1600,150
1320 150 DO 500 KQ:KQL,KQU
1330 DO 500 LQ=LQL,LQU
1340 500 CQ(KQ,LQ):CQM(KQ,LQ)
1350 Go TO 70
1350 160 DO G,KQ:XQLPXQU
1370 G: PRINT AA, STATE(KQ), (FN(XQLQ),LQ:LQL,LQU)
1390 PRINT
1390 PRINT
1400 $USE MARX2
1410 SDA TA
1411 HOME, BAR, CORI4R2, CORNR3, CORNR4, CORNR5. CORNRS, CORNR7
1412 1., 7*0.
1413 O.,1.,6*0.
1414 .75.2*0.,.25,4*O.
1415 2*0.,.75,0.,.25,3*O.
14!6 3*0.,.75.0.',.25.2*0.
1417 4*0., .75,0., .25.0.
1418 5*0., .75,0...25,0., .25,4*0., .75,0.
1419 COMPLT, FRSPAS, SUEPAS
1440 1.,0.,0.
1441 .9S,..01O
1442 .75#0.,025
1450 1.,0.,0.
1451 .95,0...05
1452 .75,00,.25
1460 1.,0.,0.
1461 .90,o.,.I0
1462 .75,0.,.25
1470 1. 0.'0.
1471 .;;,0.,.15
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4-

::. C4G;-iF ; ±JA,'-r• c•• 1.RXGA. MARK 1/2/3 (CONTD)

MARKI CONTINUED

1472 .75,0.,.25
1460 1.,0.,0.

1481 .80,0.,.20
1492 .75 0. .25
1490 .,6..
1491 .75,0.,.25
1492 *75 0 25
1500 .,6.,6
1501 .50,0.,.50
1502 75 0..25
1510 ;.,6.,06
1511 .25,0.,.75
1512 .75,0.,.25
1520 1.,O.,0.
1521 ,01,0.,.99
1522 .75.0.,.25
1530 1.,0.,0.
1531 .00i,0.,.999
1532 .75,0 .25
1801 M, PASORD, REJCUS, BACKOR, FRSPAS, SUBPAS
1802 lo,5*0.,0o 1. 4*0 ,2*0UI.,3*0.,.3*0 1.2*0.
1803 .55,0 o2,.o•. o •.. .. o0,.,9, .22,A:40,6.,.23

MARK2

2000 PRINf "COMPUTATIO1N OF THE MATRIX OF ABSORPTION TIMES"
2010 PRINT "Tt MATRIX OF ABSORPTION TIMES-"
2020 PRINT "EACH ELEMENT IS THE MEAN TIME TO ABSORPTION"
20'0 PRINT "(NU'BER OF STATES PASSED THROUGH, INCLUDING FINAL STATE-
:2040 PRINT "AND NOT INCLUDING INITIAL STATE, INORDER TO BE ABSORBED)'
2050 PRINT

2060C COMPUTE T:FN TIMES C WHERE C IS A COLUMN VECTOR OF I'S.
2070C THE ELEMENTS IN MATRIX T ARE EQUAL TO THE ROW SUM FOR EACH
2080C ROW OF FNS
2090 PRI NT BB, STATE
2100 DO 180 KQ:=QLXQU
2110 DO 170 LQ=LQL,LQU
2120 T(KQ)=T(KQ) + FN(KQ,LQ)
21i3 170 CSNTINUE
2140 PRINT AA, STATE(KQ),T(KQ)
2150 180 CONTINUE
2160 PRINT
2170 PRINT
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H. COMPUTER FORTRAN PROGRAM MARK 1/2/3 (CONTD)

hARK2 CONTINUED

?1RC0 PRINT -COMPUTATION OF THE MATRIX OF ABSORPTION PROBABILITIES"
!•)0 PRINT "U. MATRIX OF ABSORPTION PROBABILITIES"

'220O PRINT PROBABILITY OF BEING ABSORBED,'

2210 PRINT GIVEN IT WAS INITIALLY IN A TRANSIENT STATE"
2220 PRINT
2230C MULTIPLY MATRIX FN TIMES CR.
2240 DO 190 KQ:KQL,KQU
2250 DO 190 LR:I,LRU
2260 DO 190 F=KRL,KRU
2270 U(KQ,LR)zU(KG,LR) + FN(KQ,K)*C(KLR)
2290 190 CONTINUE
2290 PRINT BB, STATE , (STATE(LR),LR:!,LRU)
2300 DO GG, KQ:KQL KQU
2310 GG: PRINT AA, STATE(KQ), (U(KQLR),LR:I,LRU)
2320 215
2330 PRINT
2340 P.I NT
2350 PRINT "COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS"
2360 PRINT "INPUT NUMBER OF STEPS, "A,2370 PRINT "THAT MATRIX OF TRANSITION PROBABILITIES"
23S0 PRINT "SHOULD BE COMPUTED FOR"

"2390 m, I NT " INFUT ii=O IF COMPUTATION NOT DESIRED"
"2400 INPUT, M
2410 IF(M-0) 300 300 220
2420C GO TO END •OR MzO
2430 220 PRINT
2440 PRINT
2450 PRINT :CMP: MATRIX OF TRANSITION'
2460 PRINT 'PROBABILITIES FOR M STEPS,M",M
2470 PRINT 'PROBABILITY OF GOING FROM STATE TO STATE'
2480 PRINT
24qCC COMPUTE C TO THE M POWER.
2500 DO 225 I:1,KU
2510 Do 225 J:j LU
2520 225 CQMPI(f,J):C(I,J)
2530 DO 260 L:2,M
2540 ro 250 I:I,KU
2550 DO 250 J:I,LU
2560 CQMP(I ,J):0
2570 DO 230 K=I KU
2590 CQMP(IJ):=6QMP(I,J)+CQMPI(I,K)*C(K,J)
2590 230 CONTINUE
2600 250 CONTINUE
2610 DO 255 I:I,KU
2620 DO 255 J:!,LU
2630 255 CQMPI(I J)cQMP(I,J)
2640 260 CONTINUiL
2650 PRINT BB, STATE , (STATE(J),J=I,LU)
2660 DO Hi:I,)L'
2670 Ht PRINT AA, STATE(I), (CQMP(IJ),J:I,LU)
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- 6 -

H. COMrUJTER FORTRAN PROGRAM MAPIS (/9/ .

MARK2 CONTINUED

2680 PRINT
2690 PRINT
2700 PRINT "COMPUTATION OF STATE SPACE, M STEPS LATER,'
2710 PRINT 'GIVEN INITiAL STATE'
27201 PRINT "INPUT ISAMEA=O IF SAME ROW VECTOR TO BE USED'
2730 PRINT "INPUT ISAMEA:I FOR NEW A(K) VECTOR INPUT.'
2740 I NPUT,ISAMEA
2750 IF(ISAMEA-1) 270,265,270
2760 265
2770 PRINT 'INPUT INITIAL STATE AS A ROW VECTOP IN FOLLOWING FORM"
2780 PRINT"K=",KU
2790 PRINT "INPUT K:O IF COMPUTATION NOT DESIRED"
2800 PRINT "INPUT K,A(1),A(2),A(3),...,A(K)"
2510 INPUT,K,(A(J),J=:,K)
2820 IF(K-0) 215 215 270
2930C REPEAT M STEP 6OMPUTATION.
2840 270 PRINT
2850 PRINT
2860 PRINT "AM: ROW VECTOR FOR STATE SPACE M STEPS LATER,M=:,M
2870 PRINT GIVEN INITIAL STATE A
2880C COMPUTE AM=A TIMES CQMP.
ZSC. rRINT
2900 DO 275 J--,LU
2910 275 AM(J)=O
2920 DO 290 J=l ,LU
2930 DO 290 I=!,KU
2940 AM(J):AM(J)+A(I)*CQMP(I,J)
2950 290 CONTINUE
2960 PRINT BB, STATE ", (STATE(J),J=I,LU)
2970 PRINT CC, (AM(J),J:1,LU)
2980 CC: FORMAT(7X,|0F7.3)
2990 GO TO 215
3000 300 PRINT "INPUT MX=0 T0 END COMPUTATION'
3010 PRINT "MX-I TO DO NEXT SET OF DATA'
3020 PRINT "MX=S+1 TO SKIP S SETS OF DATA"
3030 PRINT 'AND DO NEXT SET OF DATA'
3040 INPUT,MX
3050 IF(MX-1) 330,2,310
3060 310 MXU=MX-=
3070 DO 320 (:i,MXU
3080 320 READ,((C(I,J),J:I,LU),I-I,KU)
3090 2 CONTROL = 2
3100 GO TO I
3110 330 END
3120 $USE MARKS
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H. COMPUTER FORTRAN PROGRAM MARK 1/2/3 (CONTO)

•R•3

400,') S!-IROUTINE AMXMN(XILIU.JL.JUAX.BX)
4010 DIMENS.'ON X(S.5)
40Vq XMIN:.L.E20
4030 XMAX=-I.E-20
4040 DO 400 K:IL,IU
4050 DO 400 L:JL,JU
40•0 Y:X(X,L)
4070 IF(Y-XMIN) 420,420,425
4OSO 420 XMIN-Y
4090 425 CONTINUE
4100 IF(Y-X,'AX) 400,400,525
4110 525 XMAX:Y
4120 400 CONTINUE
4130 AX:XMAX
4140 BX=XMIN
4150 RETURN
A4r,0 END
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I. COMPUTER TIME SHARING TERMINAL PRINT-OUTS

1.1 Classical Random Walk

MAR'KI 13t11 MON.---07/08/6S

IN MARK2
IN .FIRST
IN MARK3
IN .FIRST

SIMULATION WITH
MARKOV TRANSITION MATRIX MODEL OF

A REQUISITION PROCESSING SYSTEM
BY IRWIN GBODMAN
INPUT, C, TRANSITION MATRIX IN CANONICAL FORM

IN LINES 1420 THRU 1800 BY ROWS
PRIECEDE C MATRIX DATA WITH NAMES OF STATES
RIGHT JUSTIFY BETWEEN COMMAS WITH SPACES ADDED FOR
7 CHARACTER FORMAI.
EXAMPLE. HOME, BAR, CORNR2,ETC. FOLLOWED BY DATA

INPUT QTY OF ABSORBING STATES=IABSOR
? ?2
INPUT QTY OF TRANSIENT STATES:ITRANS
? 76
QTY OF ROWS IN MATRIX C 8
QTY OF COLUM4NS IN MATRIX C 8

TRANSITION MATRIX, C. IN CANONICAL FORM

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNRI6 CORNR7

HOME 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BAR 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

CORNR2 .750 0.000 0.000 .50 0.000 0.000 0.000 0.000

CORNR3 0.000 0.000 .750 0,000 .250 0.000 0.000 0.000

CORNR4 0.000 0.000 0.000 ,750 0.000 .250 0.000 0.000

CORNR5 0.000 0.000 0.000 0.000 .750 0.000 .250 0.000

CORNR6 0.000 0.000 0.000 0.000 0.000 .750 O.GOO0 .250

CORNR7 0,000 .250 0.000 0.000 0.000 0.000 .750 0.000

PARTITION TRANSITION MATRIX (CANONICAL FORM)

INTO FOLLOWING MATRICIESt
CI: IDENTITY MATRIX

STATE HOME BAR
HOME 1 .000 0.000
BAR 0.000 1.000
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I. COMPUTER TIME SHARING TERMINAL PRINT-OUTS (CONTD)

I.1 Classical Random walk

CR: MATRIX OF TRANSIENT TO ABSORBING PRORARTIITWC-
RnBAB2LIIY liy 6OING FROM TRANSIENT STATE
TO ABSORBING STATE

STATE HOME BAR
CORNR2 .750 0.000
CORNR3 0.000 0.000
CORNR4 0.000 0.000
CORNR5 0.000 0.000
CORNRG 0.000 0.000
CORNR7 0.000 .250

CQ: MATRIX OF TRANSIENT TO TRANSIENT PROSABILITIES-
PROBABILITY OF GOING FROM TRANSIENT STATE
10 TRANSIENT STATE

STATE CCRNR2 CORNR3 CORNR4 CORNR5 CBRNRG CORNR7
CORNR2 0.000 .250 0.000 0.000 0.000 0.000
CORHR3 .750 0.000 .250 0.000 0.000 0.000
CORNR4 0.000 .750 0.000 .250 0.000 0.000
CO3RNR5 0.000 0.000 .750 0.000 .250 0.000
CORNRG 0.000 0.000 0,000 .750 0.000 .P50
CORNR7 0.000 0.000 0.000 0.000 .750 0.000

COMPUTATION OF THE FUNDAMENTAL MATRIX
FN- FUNDAMENTAL MATRIX-
EACH ELEMENT IS THE EXPECTED NUMBER OF TIMES
IN STATE J(C0LIJMN) BEFORE BEING ABSORBED
GIVEN THAT THE PRESENT STATE IS I(ROW)

STATE CORNR2 CORNR3 CORRRA CORNR5 CORNR6 CBRNR7
CORNR2 1.332 ,443 .146 .048 .015 .004
CORNR3 1.329 1.771 .586 .190 .059 .015
CORNR4 1.317 1.757 1.903 .631 .190 .048
CORNR5 1,284 1.713 1.855 1.903 .586 .146
CORNR6 1.1R, 1.581 1.713 1,757 1.771 .443
CORNR7 .889 1.186 1.284 1.317 1.328 1.352

COMPUTATION OF THE MATRIX BF ABSORPTION TIMES
T: MATRIX OF ABSORPTION TIMES-
EACH ELEMENT IS THE MEAN TIME TO ABSORPTION
(NUMER OF STATES PASSED THROUGH, INCLUDING FINAL STATE
AND NOT INCLUDING INITIAL STATE, INORDER TO BE ABSORBED)

STATE
CORNR2 1.987
CORNR3 3.949
CORNR4 5.833
CO3RNR5 7.487
CORNR6 9.450
CORNR7 7.337 60



I. COMPUTER TTMW A.N TZR-ivii'uii iFk(UNT-0UT,¶ (C0-'1D)

1.1 Classical Random Walk

COMPUTATION OF THE MATRIX OF ABSORPTION PROBABILITIES
U. MATRIX OF" ABSORPTION PROBABILITIES
PROBABILITY OF BEING ABSORSF.,
GIVEN IT WAS INITIALLY IN A TRANSIENT STATE

STATE HOME BAR
CORNR2 .999 .001
CORNR3 .996 .004
CORNRA .998 .012
CORNR5 .963 .037
CORNRG .89 .111
CORNR7 .667 .333

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF COMPUTATION NOT DESIRED
? ?2

CMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPS,M- 2
PROBABILITY OF GOING FROM STATE TO STATE

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNRS CORNR7
HOME 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BAR 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
CORNR2 .750 0.000 .187 0.000 *062 0.000 0.000 0.000
CORNR3 .562 0.000 0.000 .375 0,000 .062 0.000 0.000
CORNR4 0.000 0.000 .562 0.000 .375 0.000 .062 0.000
CORNR5 0.000 0.000 0.000 .562 0.000 .375 0.000 .062
CORNR6 0.000 .062 0.000 0,000 .562 0.n00 .375 0.000
CBRNR7 0,000 P.50 0.000 0.000 0.000 .562 0.000 .197

COMPUTATION OF STATE SPACE, M STEPS LATER,
GIVEN INITIAL STATE
"INPUT ISAMEA:O IF SAME ROW VECTOR TO BE USED
INPUT ISAMEA=1 FOR NEW A(K) VECTOR INPUT.

771
INPUT INITIAL STATE AS A ROW VECTOR IN FOLLOWING FORM
K- 8
INPUT K=O IF COMPUTATION NOT DESIRED
INPUT K,A(i) ,A(2),A(3),...,A(K)
? ?5,D,0,.167.167,.167,.!67,.167,.1 67

"AM ROW VECTOR FOR STATE SPACE M STEPS LATER,M: 2
MGIVEN INITIAL STATE A

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
.219 .052 .123 .157 .167 .167 .073 .042
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I. COMUlUTER 'rIME CiH-ARING TERMINAL PRINr-OUTS (COtrn)

T 1 I-Tr ~Cc' I .

r('ItPJTI'ATJlN OF TRANSIENT PROBABILITY MATRIX F0R M STEPS
14PIJT NUMBER OF STEPS, M,
iriAT ,",FTRIX i F(AN.HI l N PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF COMPUTATION NOT DESIRED
? ?25

CMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPS,,M" 25
PROBABILITY 3F GOING FR3M STATE TO STATE

STATE HOME BAR CORNR2 CORNR3 COHNR4 CORNR5 CORNRG CORNR7
HIME 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BAR 0.000 1 .000 0.000 0.000 0.000 0.000 O.0o0 0.000
SCORNR? .999 .001 0.000 .000 0.000 .000 0.000 .0001; CORNR3 .995 .004 .0ol O.o00 .001 0.000 .000 0.000
rORNR4 .986 .012 0.000 .002 0.000 .001 0.000 .000
CONR5 .959 .037 .003 0.000 .002 0.000 .001 0.000
CORNRG .884 .111 0.000 .004 0.000 .002 0.000 .000
CORNR7 .660 .333 .003 0.000 .003 0.000 .001 0.000

A

C3OPUTATION OF STATE SPACE, M STEPS LATER.GIVEN INITIAL STATE
SINPUT ISAMEA:O IF SAME ROW VECTOR TO BE USED

INPUT ISAMEA:! FOR NEW A(K) VECTOR INPUT.
7 7?0

AM. ROW VECTOR FOR STATE SPACE M STEPS LATER,M: 25

GIVEN INITIAL STATE A

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 C0RNR6 CORNR7
I .9i6 .03 .001 .001 .001 .000 .000 .000

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SH3ULD BE COMPUTED FOR

IN"UT M:O IF COMPUTATION NOT DESIRED
? 73

CMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPSM= 3
PROBABILITY OF GOING FR~h STATE TO STATE

STATE HOME BAR CORNR2 CORNR3 CORNR4 CIRNR5 CORNR6 CORNR7
HOME 1.000 0.000 0.000 0.000 0.000 U.000 0.000 0.000
BAR 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

CORNR2 .891 0.000 0.000 .094 0.000 .016 0.000 0.000
CORNR3 .562 0.000 .281 0.000 .141 0.000 .016 0.000
CORNR4 .422 0.000 0.000 .422 0,000 .141 0.000 .016
CORNR5 0.000 .016 .422 0.000 .422 0.000 .141 O.010

CrRNR6 0.000 .062 0.000 .422 0.000 .422 0.000 .094
CORNR7 0.000 .297 0.000 0.000 .422 O.OO .281 0.000
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I. COMPUTER TIME SHARING TERMINAL PRINT-OUTS (CONTD)

T .1 (-TA5S. Tr AT. uA1!~Nf --ý1-

COMPUTATION OF STATE SPACE, M STEPS LATER.
c . NI 1*,'T S T A T E
INPUT ISAMEA-- IF SAME ROW VECTOR TO BE USED
INPUT ISAMEA=! FOR NEW A(K) VECTOR INPUT.
? ?0

AM. ROW VECTOR FOR STATE SPACE M STEPS LATERM: 3
GIVEN INITIAL STATE A

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNRS ORNR7
.313 .063 .117 .157 .164 .097 .073 .018

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M:O IF COMPUTATION NOT DESIRED
7 ?5

CMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPS,M= 5
PROBABILITY OF GOING FROM STATE TO STATE

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
HOME 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BAR 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
CORNR2 .943 0.000 0.000 .044 0.000 .012 0.000 l001
CORNR3 .773 .001 .132 0.000 .079 0.000 .015 0.000
CORNR4 .659 o004 0.000 .237 0.000 .088 0.000 .012
CORNR5 .316 .024 .316 0.000 .264 0.000 .079 0.000
CORNRG .237 .086 0.000 .396 0.000 .237 0.000 .0441
CORNR7 0.000 .314 .237 0.000 .316 0.000 .132 01000

COMPUTATION OF STATE SPACE, M STEPS LATER,
GIVEN INITIAL STATE
INPUT ISAMEA=O IF SAME ROW VECTOR TO BE USED
INPUT ISAMEA=1 FOR NEW A(K) VECTOR INPUT.
? ?0

AM. ROW VECTOR FOR STATE SPACE M STEPS LATER,M: 5
GIVEN INITIAL STATE A

STATE HOME BAR CORNR2 CORNR3 CORNR4 CORNR5 CORNR6 CORNR7
.489 .072 .114 .113 .110 .056 .038 .009

COMPUTATION EF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M:O IF COMPUTATION NOT DESIRED
? ?0
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1.2 Model A of Requisition Processing System

MARKI 13:45 MON.---07/0/68

SIMULATION WITH
MARKOV TRANSIYION MATRIX MODEL OF
A REQUISITION PROCESSING SYSTEM
BY IRWIN GOODMAN
INPUT, C, TRANSITION MATRIXA IN CANONICAL FORM
IN LINES 1420 THRU 1800 BY ROWS
PRECEDE C MATRIX DATA WITH NAMES OF STATES
RIGHT JUSTIFY BETWEEN COMMAS WITH SPACES ADDED FOR
7 CHARACTER FORMAT.
EXAMPLE. HOME, BAR, CORNR2,ETC. FOLLOWED BY DATA
INPUT QTY OF ABSORBING STATES=IABSOR
? ?4
INPUT QTN' OF TRANSIENT STATES:ITRANS
? ?2
QTY OF ROWS IN MATRIX C 6
QTY OF COLUMNS IN MATRIX C = 6

TRANSITION MATRIX, C, IN CANONICAL FORM

STATE MR 0 PASORD REJCUS BACXOR FRSPAS SUBPAS
MRO 1.000 0.000 01000 0.000 0.000 0.000
PASORD 0,000 1,000 0,000 0.000 0,000 0.000
REJCUS 0,000 0.000 1,000 0,000 0.000 0.000
BACKOR 0.000 0.000 0,000 !000 0.000 0,000
FRSPAS .550 .020 .030 .220 0.000 .180

UIBPAS .060 .090 .220 .400 0,000 .230

PARTITION TRANSITION MATRIX (CANONICAL FORM)
INTO FOLLOWING NATRICIESi
CI: IDENTITY MATRIX

STATE MRO PASORD REJCUS BACKOR
MRO 1.000 0.000 0,000 0.000
PASORD 0,000 14000 0,000 0,000
REJCUS 0,000 09000 1,000 0,000
BACXI8R 0.000 04000 0,000 1.000
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1.2 Aodel A of Requisition ProcessinQ Systpm

CR" MATRIX OF TRANSIENT TO ABSORBING PROBABILITIES-
PILOLSPAD.AILIT OF GOING F-rFrO TRAHSIENiT STATE

TO ABSORBING STATE

STATE MBRO PASORD REJCUS BACKOR
FRSPAS .550 .020 .030 .220
S UBPAS .060 .090 .220 .400

CQ: MATRIX OF TRANSIENT TO TRANSIENT PROBABILITIES-
PROBABILITY OF GOING FROM TRANSIENT STATE

TO TRANSIENT STATE

STATE FRSPAS SLUBPAS
FRSPAS 0.000 .180
S UBPAS 0.000 .230

COMPUTATION OF THE FUNDAMENTAL MATRIX
FN: FUNDAMENTAL MATRIX-
EACH ELEMENT IS T"E EXPECTED NUMBER OF TIMES
IN STATE J(COLUMN) BEFORE BEING ABSORBED
GIVEN THAT THE PRESENT STATE IS I(ROW)

STATE FRSPAS SUBPAS
FRSPAS 1.000 .234
SUBPAS 0.000 1.299

COMPUTATION OF THE MATRIX OF ABSORPTION TIMES
T: MATRIX OF ABSORPTION TIMES-
EACH ELEMENT IS THE MEAN TIME TO ABSORPTION
(NUMBER OF STATES PASSED THROUGH, INCLUDING FINAL STATE
AND NOT INCLUDING INITIAL STATE, INORDER TO BE ABSORBED)

STATE
FRSPAS 1.234
SUBPAS 1 .299

COMPUTATION OF THE MATRIX OF ABSORPTION PROBABILITIES
U. MATRIX OF ABSORPTION PROBABILITIES
PROBABILITY OF BEING ABSORBED,
GIVEN IT WAS INITIALLY IN A TRANSIENT STATE

STATE MiR PACORD REJCUS BACKOR
FRSPAS .564 .041 .081 .314
SUBPAS .078 .11T .266 .519

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS

INPUT NUMBER OF STEPS M, B
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF CIMPUTATION NOT DESIRED
7 ?2 65



1.2 Model A of ýequisition Proccssina ,Svptpmm

CMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPSM: 2"'"M" " 1 T0 A• 0 -. 1"I "" M ^'mTAT -0 STATE
4 4j . , 4-' L' 4 . 4 '.A I I VV, iu I A ;. VI i

STATE MRO PASORD REJCUS BACKOR FRSPAS SUBPAS
MRO 1.000 0.000 0.000 0.000 0.000 0.000
PASORD 0.000 1.000 0.000 0.000 0.000 0.000
REJCUS 0.000 0.000 1.000 0.000 0.000 0.000
PACKOR 0.000 0.000 0.000 1.000 0.000 0.000
FRSPAS .561 .036 .070 .292 0.000 .041
SUBPAS .074 .111 .271 .492 0.000 .053

COMPUTATION OF STATE SPACE, M STEPS LATER,
GIVEN INITIAL STATE
INPUT ISAMEA:0 IF SAME ROW VECTOR TO BE USED
INPUT ISAMEAz1 FOR NEW A(K) VECTOR INPUT.
? ?I
INPUT INITIAL STATE AS A ROW VECTOR IN FOLLOWING FORM
K= 6
INPUT K=O IF COMPUTATION NOT DESIRED
INPUT KA(1) ,A(2) ,A(,) ,...,A(K)
7 ?6,0,0,0,0,.80,.2(0

AM ROW VECTOR FOR STATE SPACE M STEPS LATER,M- 2
GIVEN INITIAL STATE A

STATE R0 PASORD REJCUS BACKOR FRSPAS SUBPAS
.463 .051 .110 .332 0.000 .044

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF COMPUTATION NOT DESIRED
? 73

CMPs MATRIX OF TRANSITION
PROBABILITIES FOR M STEPSM= 3
PROBABILITY OF GOING FROM STATE TO STATE

STATE MR O PASORD REJCUS BACKOR FRSPAS SUBPAS
MRO 1.000 0.000 0.000 0.000 0.000 0.000
PASORD 0.000 1.000 0.000 0.000 0.000 0.000
REJCUS 0.000 0.000 1.000 0.000 0.000 0.000
BACKOR 0.000 0.000 0.000 1.000 0.000 0.000
FRSPAS .563 .040 .079 .309 0.000 .010
SUBPAS .077 .115 .282 .513 0.000 .012

AM. ROW VECTOR FOR STATE SPACE M STEPS LATER,M: 3

GIVEN INITIAL STATE A

STATE MR0 PASORD REJCUS BACKOR FRSPAS SUBPAS
,466 .055 .119 .349 0.000 .010
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1 • Mn,,,l 0 ^ •--- .... . .rLucessing System

MARXI 14:20 MON.---07/08/61

IN MARK2
IN .FIRST
IN MARK3
IN .FIRST

SIMULATION WITH
MARXOV TRANSITION MATRIX MODEL OF
A REQUISITION PROCESSING SYSTEM
BY IRWIN GOODMAN
INPUT, C, TRANSITION MATRIX IN CANONICAL FORM
IN LINES 1420 THRU 1800 BY ROWS
PRECEDE C MATRIX DATA WITH NAMES OF STATES
RIGHT JUSTIFY BETWEEN COMMAS WITH SPACES ADDED FOR
7 CHARACTER FOR.MAT.
EXAMPLE 1  HOME, BAR, CORNRZ,ETC. FOLLOWED BY DATA
INPUT QTY OF ABSORBING STATES:IABSOR
? 71
INPUT QTY OF TRANSIENT STATES:ITRANS
7 ?2
QTY OF ROWS IN MATRIX C a
QTY OF COLUMNS IN MATRIX C 3

TRANSITION MATRIX, C, IN CANONICAL FORM

STATE COMPLT FRSPAS SUBPAS
COMPLT 1.000 0.000 0.000
FRSPAS .820 0.000 .180
SUBPAS ,770 0.000 .230

PARTITION TRANSITION MATRIX (CANONICAL FORM)
INTO FOLLOWING MATRICIES:
Cl: IDENTITY MATRIX

STATE COMPLT
COMPLT 1.000

CR: MATRIX OF TRANSIENT TO ABSORBING PROBABILITIES-
PROBABILITY OF GOING FROM TRANSIENT STATE
TO ABSORBING STATE

STATE COMPLT
FRSPAS .820
SUBPAS .770
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1.3 Model B of Requisition Processing System (contd)

CQi MATRIX OF TRANSIENT TO TRANSIENT PROBABILITIES-
PROBABILITY OF GOING FROM TRANSIENT STATE
TO TRANSIENT STATE

STATE FRSPAS SUBPAS
FRSPAS 0.000 .1BO
SUBPAS 0.000 .930

COMPUTATION OF THE FUNDAMENTAL MATRIX
FN: FUNDAMENTAL MATRIX-
EACH ELEMENT IS THE EXPECTED NUMBER OF TIMES
IN STATE J(COLUMN) BEFORE BEING ABSORBED
GIVEN THAT THE PRESENT STATE IS I(ROW)

STATE FRSPAS SUBPAS
FRSPAS 1.000 .234
SUBPAS 0.000 1.299

COMPUTATION OF THE MATRIX OF ABSORPTION TIMES
To MATRIX OF ABSORPTION TIMES-
EACH ELEMENT IS THE MEAN TIME TO ABSORPTION
(NUMBER OF STATES PASSED THROUGH, INCLUDING FINAL STATE
AND NOT INCLUDING INITIAL STATE, INORDER TO BE ABSORBED)

STATE
FRSPAS 1.234
SUBPAS 1 .299

COMPUTATION OF THE MATRIX OF ABSORPTION PROBABILITIES
U. MATRIX OF ABSORPTION PROBABILITIESPOBABILITY OF BEING ABSORBED,
GIVEN IT WAS INITIALLY IN A TRANSIENT STATE

STATE COMPLT
FRSPAS 1.000
SUBPAS 1.000

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS MA B
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF COMPUTATION NOT DESIRED
7 ?9

CMPt MATRIX OF TRANSITION
PROBABILITIES FOR M STEPS,M= 2
PROBABILITY 0:- GOING FROM STATE TO STATE

STATE COMPLT FRSPAS SUBPAS
COMPLT 1,000 0.000 0.000
FRSPA S .959 0.000 .041
SUBPAS .947 0.000 .053
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[1.3 Model B of Requisition Processing System (contd)

COMPUTATION OF STATE SPACE, M STEPS LATER,
GT %"EN INITIAL STATE
INPUT ISAMEA=O i0 SAME kOW VEC1SO 10 BE USED
INPUT ISAMEA:i FOR NEW A(K) VECTOR INPUT.
? ?I
INPUT INITIAL STATE AS A ROW VECTOR IN FOLLOWING FORM
K: 3
INPUT K:O IF COMPUTATION NOT DESIRED
INPUT K,A(1),A(2) ,A(3), .. ,A(K)
7 ?3,0,.80, .20

AM. ROW VECTOR FOR STATE SPACE M STEPS LATER,M: 2
GI(IEN INITIAL STATE A

STATE COWPLT FRSPAS SUBPAS
.956 0.000 .044

COMPUTATION OF TRANSIENT PROBABILITY MATRIX FOR M STEPS
INPUT NUMBER OF STEPS, M,
THAT MATRIX OF TRANSITION PROBABILITIES
SHOULD BE COMPUTED FOR

INPUT M=O IF COMPUTATION NOT DESIRED
? 73

cMP: MATRIX OF TRANSITION
PROBABILITIES FOR M STEPS,M" 3
PROBABILITY OF GOING FROM STATE TO STATE

STATE COMPLT FRSPAS SUBPAS
COMPLT 1,000 0.000 0.000
FRSPAS .990 0.000 .010
SUBPAS .998 0.000 .012

COMPUTATION OF STATE SPACE, N STEPS LATER,
GIVEN INITIAL STATE
INPUT ISAMEA:O IF SAME ROW VECTOR TO BE USED
INPUT ISAMEA:I FOR NEW A(K) VECTOR INPUT.
7 70

AMt ROW VECTOR FOR STATE SPACE M STEPS LATE.M- 3
GIVEN INITIAL STATE A

STATE COMPLT FRSPAS SUBPAS
.990 0.000 .010
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